Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dopamine biosynthesis is regulated by S-glutathionylation. Potential mechanism of tyrosine hydroxylast inhibition during oxidative stress.

Identifieur interne : 000F96 ( Main/Exploration ); précédent : 000F95; suivant : 000F97

Dopamine biosynthesis is regulated by S-glutathionylation. Potential mechanism of tyrosine hydroxylast inhibition during oxidative stress.

Auteurs : Chad R. Borges [États-Unis] ; Timothy Geddes ; J Throck Watson ; Donald M. Kuhn

Source :

RBID : pubmed:12376535

Descripteurs français

English descriptors

Abstract

Tyrosine hydroxylase (TH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine, is inhibited by the sulfhydryl oxidant diamide in a concentration-dependent manner. The inhibitory effect of diamide on TH catalytic activity is enhanced significantly by GSH. Treatment of TH with diamide in the presence of [(35)S]GSH results in the incorporation of (35)S into the enzyme. The effect of diamide-GSH on TH activity is prevented by dithiothreitol (DTT), as is the binding of [(35)S]GSH, indicating the formation of a disulfide linkage between GSH and TH protein cysteinyls. Loss of TH catalytic activity caused by diamide-GSH is partially recovered by DTT and glutaredoxin, whereas the disulfide linkage of GSH with TH is completely reversed by both. Treatment of intact PC12 cells with diamide results in a concentration-dependent inhibition of TH activity. Incubation of cells with [(35)S]cysteine, to label cellular GSH prior to diamide treatment, followed by immunoprecipitation of TH shows that the loss of TH catalytic activity is associated with a DTT-reversible incorporation of [(35)S]GSH into the enzyme. A combination of matrix-assisted laser desorption/ionization/mass spectrometry and liquid chromatography/tandem mass spectrometry was used to identify the sites of S-glutathionylation in TH. Six cysteines (177, 249, 263, 329, 330, and 380) of the seven cysteine residues in TH were confirmed as substrates for modification. Only Cys-311 was not S-glutathionylated. These results establish that TH activity is influenced in a reversible manner by S-glutathionylation and suggest that cellular GSH may regulate dopamine biosynthesis under conditions of oxidative stress or drug-induced toxicity.

DOI: 10.1074/jbc.M209042200
PubMed: 12376535


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dopamine biosynthesis is regulated by S-glutathionylation. Potential mechanism of tyrosine hydroxylast inhibition during oxidative stress.</title>
<author>
<name sortKey="Borges, Chad R" sort="Borges, Chad R" uniqKey="Borges C" first="Chad R" last="Borges">Chad R. Borges</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Michigan State University, East Lansing 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Michigan State University, East Lansing 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Geddes, Timothy" sort="Geddes, Timothy" uniqKey="Geddes T" first="Timothy" last="Geddes">Timothy Geddes</name>
</author>
<author>
<name sortKey="Watson, J Throck" sort="Watson, J Throck" uniqKey="Watson J" first="J Throck" last="Watson">J Throck Watson</name>
</author>
<author>
<name sortKey="Kuhn, Donald M" sort="Kuhn, Donald M" uniqKey="Kuhn D" first="Donald M" last="Kuhn">Donald M. Kuhn</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12376535</idno>
<idno type="pmid">12376535</idno>
<idno type="doi">10.1074/jbc.M209042200</idno>
<idno type="wicri:Area/Main/Corpus">000F63</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F63</idno>
<idno type="wicri:Area/Main/Curation">000F63</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F63</idno>
<idno type="wicri:Area/Main/Exploration">000F63</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dopamine biosynthesis is regulated by S-glutathionylation. Potential mechanism of tyrosine hydroxylast inhibition during oxidative stress.</title>
<author>
<name sortKey="Borges, Chad R" sort="Borges, Chad R" uniqKey="Borges C" first="Chad R" last="Borges">Chad R. Borges</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Michigan State University, East Lansing 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Michigan State University, East Lansing 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Geddes, Timothy" sort="Geddes, Timothy" uniqKey="Geddes T" first="Timothy" last="Geddes">Timothy Geddes</name>
</author>
<author>
<name sortKey="Watson, J Throck" sort="Watson, J Throck" uniqKey="Watson J" first="J Throck" last="Watson">J Throck Watson</name>
</author>
<author>
<name sortKey="Kuhn, Donald M" sort="Kuhn, Donald M" uniqKey="Kuhn D" first="Donald M" last="Kuhn">Donald M. Kuhn</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Diamide (pharmacology)</term>
<term>Dopamine (biosynthesis)</term>
<term>Glutathione (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization (MeSH)</term>
<term>Tyrosine 3-Monooxygenase (antagonists & inhibitors)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Dopamine (biosynthèse)</term>
<term>Glutathion (métabolisme)</term>
<term>RT-PCR (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Spectrométrie de masse MALDI (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Tyrosine 3-monooxygenase (antagonistes et inhibiteurs)</term>
<term>Tétraméthyl-diazènedicarboxamide (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Tyrosine 3-Monooxygenase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Dopamine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Diamide</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Tyrosine 3-monooxygenase</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Dopamine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Tétraméthyl-diazènedicarboxamide</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Molecular Sequence Data</term>
<term>Oxidative Stress</term>
<term>Rats</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>RT-PCR</term>
<term>Rats</term>
<term>Spectrométrie de masse MALDI</term>
<term>Stress oxydatif</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tyrosine hydroxylase (TH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine, is inhibited by the sulfhydryl oxidant diamide in a concentration-dependent manner. The inhibitory effect of diamide on TH catalytic activity is enhanced significantly by GSH. Treatment of TH with diamide in the presence of [(35)S]GSH results in the incorporation of (35)S into the enzyme. The effect of diamide-GSH on TH activity is prevented by dithiothreitol (DTT), as is the binding of [(35)S]GSH, indicating the formation of a disulfide linkage between GSH and TH protein cysteinyls. Loss of TH catalytic activity caused by diamide-GSH is partially recovered by DTT and glutaredoxin, whereas the disulfide linkage of GSH with TH is completely reversed by both. Treatment of intact PC12 cells with diamide results in a concentration-dependent inhibition of TH activity. Incubation of cells with [(35)S]cysteine, to label cellular GSH prior to diamide treatment, followed by immunoprecipitation of TH shows that the loss of TH catalytic activity is associated with a DTT-reversible incorporation of [(35)S]GSH into the enzyme. A combination of matrix-assisted laser desorption/ionization/mass spectrometry and liquid chromatography/tandem mass spectrometry was used to identify the sites of S-glutathionylation in TH. Six cysteines (177, 249, 263, 329, 330, and 380) of the seven cysteine residues in TH were confirmed as substrates for modification. Only Cys-311 was not S-glutathionylated. These results establish that TH activity is influenced in a reversible manner by S-glutathionylation and suggest that cellular GSH may regulate dopamine biosynthesis under conditions of oxidative stress or drug-induced toxicity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12376535</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>01</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>277</Volume>
<Issue>50</Issue>
<PubDate>
<Year>2002</Year>
<Month>Dec</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Dopamine biosynthesis is regulated by S-glutathionylation. Potential mechanism of tyrosine hydroxylast inhibition during oxidative stress.</ArticleTitle>
<Pagination>
<MedlinePgn>48295-302</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Tyrosine hydroxylase (TH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine, is inhibited by the sulfhydryl oxidant diamide in a concentration-dependent manner. The inhibitory effect of diamide on TH catalytic activity is enhanced significantly by GSH. Treatment of TH with diamide in the presence of [(35)S]GSH results in the incorporation of (35)S into the enzyme. The effect of diamide-GSH on TH activity is prevented by dithiothreitol (DTT), as is the binding of [(35)S]GSH, indicating the formation of a disulfide linkage between GSH and TH protein cysteinyls. Loss of TH catalytic activity caused by diamide-GSH is partially recovered by DTT and glutaredoxin, whereas the disulfide linkage of GSH with TH is completely reversed by both. Treatment of intact PC12 cells with diamide results in a concentration-dependent inhibition of TH activity. Incubation of cells with [(35)S]cysteine, to label cellular GSH prior to diamide treatment, followed by immunoprecipitation of TH shows that the loss of TH catalytic activity is associated with a DTT-reversible incorporation of [(35)S]GSH into the enzyme. A combination of matrix-assisted laser desorption/ionization/mass spectrometry and liquid chromatography/tandem mass spectrometry was used to identify the sites of S-glutathionylation in TH. Six cysteines (177, 249, 263, 329, 330, and 380) of the seven cysteine residues in TH were confirmed as substrates for modification. Only Cys-311 was not S-glutathionylated. These results establish that TH activity is influenced in a reversible manner by S-glutathionylation and suggest that cellular GSH may regulate dopamine biosynthesis under conditions of oxidative stress or drug-induced toxicity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Borges</LastName>
<ForeName>Chad R</ForeName>
<Initials>CR</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Michigan State University, East Lansing 48824, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Geddes</LastName>
<ForeName>Timothy</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Watson</LastName>
<ForeName>J Throck</ForeName>
<Initials>JT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kuhn</LastName>
<ForeName>Donald M</ForeName>
<Initials>DM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DA10756</GrantID>
<Acronym>DA</Acronym>
<Agency>NIDA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2002</Year>
<Month>10</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>10465-78-8</RegistryNumber>
<NameOfSubstance UI="D003958">Diamide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.16.2</RegistryNumber>
<NameOfSubstance UI="D014446">Tyrosine 3-Monooxygenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>VTD58H1Z2X</RegistryNumber>
<NameOfSubstance UI="D004298">Dopamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>J Biol Chem. 2003 Jan 31;278(5):3407</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003958" MajorTopicYN="N">Diamide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004298" MajorTopicYN="N">Dopamine</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019032" MajorTopicYN="N">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014446" MajorTopicYN="N">Tyrosine 3-Monooxygenase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12376535</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M209042200</ArticleId>
<ArticleId IdType="pii">M209042200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Geddes, Timothy" sort="Geddes, Timothy" uniqKey="Geddes T" first="Timothy" last="Geddes">Timothy Geddes</name>
<name sortKey="Kuhn, Donald M" sort="Kuhn, Donald M" uniqKey="Kuhn D" first="Donald M" last="Kuhn">Donald M. Kuhn</name>
<name sortKey="Watson, J Throck" sort="Watson, J Throck" uniqKey="Watson J" first="J Throck" last="Watson">J Throck Watson</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Borges, Chad R" sort="Borges, Chad R" uniqKey="Borges C" first="Chad R" last="Borges">Chad R. Borges</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12376535
   |texte=   Dopamine biosynthesis is regulated by S-glutathionylation. Potential mechanism of tyrosine hydroxylast inhibition during oxidative stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12376535" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020